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ABSTRACT
Background: Contrast-associated acute kidney injury (CA-AKI) is frequent in patients with chronic kidney disease who are 
submitted to cardiac endovascular procedures using iodinated contrast. In hemoadsorption, cartridges containing styrene-
divinylbenzene sorbent resin are applied to remove substances from the blood through an extracorporeal circuit. Importantly, 
iodinated contrast is also removed via adsorption. We aimed to determine the adsorptive kinetics of the iodinated contrast me-
dium iohexol using a 1:3 scale model of the HA380 cartridge.
Methods: An experimental in vitro study utilizing a closed-loop extracorporeal circuit with an interposed sorbent cartridge. A 
solution spiked with iohexol was recirculated for 60 min. Samples for the measurement of iohexol were drawn at 0, 5, 10, 15, 20, 
30, 40, and 60 min. The experiment was carried out twice.
Results: In experiments 1 and 2, the reduction ratio after 60 min was 53.0% and 53.1%, respectively. In experiment 1, iohexol 
clearance was 46.79 mL/min during the first 5 min and decayed to 3.57 mL/min during the last 20 min. In experiment 2, iohexol 
clearance was 46.72 mL/min and decayed to 3.87 mL/min during the last 20 min. The ratio of adsorbate/sorbent was 155 mg/g.
Conclusion: A 1:3 scale model of the HA380 cartridge efficiently removes iodinated contrast in a clinical-scale in vitro circuit. 
These findings provide a rationale for hemoadsorption as an intervention in clinical trials to prevent or attenuate CA-AKI.
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1   |   Introduction

Contrast-associated acute kidney injury (CA-AKI) is a frequent 
complication in patients with chronic kidney disease (CKD) re-
ceiving intra-arterial iodinated contrast for cardiac procedures 
such as coronary angiography/angioplasty, ventriculography, 
and transcatheter aortic valve replacement [1, 2]. Up to 14% of 
patients with CKD stage ≥ 4 (i.e., estimated glomerular filtration 
rate < 30 mL/min/1.73 m2) present acute kidney injury (AKI) 
following these percutaneous procedures [3]. Additionally, per-
sistent kidney dysfunction, defined as a sustained reduction in 
the estimated glomerular filtration rate below 25% of the base-
line, occurs in 12% of these high-risk individuals [3]. In light of 
the established deleterious long-term outcomes in the contin-
uum process of AKI, acute kidney disease, and CKD, [4, 5] it 
is logical to investigate interventions to prevent or mitigate CA-
AKI. Notwithstanding, to date, pharmacological interventions 
and hemodialysis have been ineffective in preventing CA-AKI 
[6–8]. The current recommendations for the prevention or mit-
igation of CA-AKI comprise the discontinuation of potentially 
nephrotoxic medications and administration of isotonic intra-
venous crystalloid prior and following the contrast-enhanced 
procedure [6].

Hemoadsorption is an extracorporeal blood purification tech-
nique [9–13] in which blood permeates a solid material (sorbent), 
and some substances are retained on its surface due to physi-
cochemical interactions, a mass-transfer mechanism defined 
as adsorption [14]. The first reports of the use of crosslinked 
divinyl-benzene copolymers sorbents for hemoadsorption in the 
context of drug intoxication were published in the 1970s [15]. 
Kellum and co-workers tested the adsorptive properties of a spe-
cific divinyl-benzene sorbent for iodinated contrast in two differ-
ent in vitro models [16, 17]. The results of these proof-of-concept 
experiments were encouraging. Indeed, iodinated contrast was 
efficiently removed. Nonetheless, an experimental model emu-
lating an extracorporeal circuit in a closed-loop configuration, 
using commercially available elements (e.g., cartridge, sorbent 
resin, peristaltic pump, blood tubing), with iodinated contrast 
doses and solution flow applied in clinical practice, was never 
built. Therefore, information such as adsorptive efficiency over 
time after exposure to a commonly used contrast dose, contrast 
clearance, and sorbent saturation are lacking.

Some studies have demonstrated a dose–response association 
between the volume of iodinated contrast and CA-AKI in per-
cutaneous cardiac procedures [18, 19]. Accordingly, there is bio-
logical plausibility in exposing high-risk patients to the smallest 
possible amount of contrast to prevent CA-AKI. Some strategies 
are already applied to minimize contrast exposure, such as using 
biplane angiography to acquire two images for each injection, 
automated injectors, and thinner catheters (e.g., 4 Fr or 5 Fr). 
The removal of iodinated contrast by hemoadsorption could be 
envisioned as an additional tool to reduce the risk of CA-AKI. A 
conceivable clinical scenario comprises high-risk patients sub-
mitted to complex procedures in which a higher contrast volume 
will likely be required.

We constructed a closed-loop extracorporeal circuit with com-
ponents and setup parameters used in clinical practice. A car-
tridge filled with sorbent resin was interposed downstream of a 

peristaltic pump, and a solution with iohexol was recirculated. 
The aim of this study was to assess the impact of adsorption on 
the kinetics of an iodinated contrast medium using a cartridge 
with sorbent material. We expect that the study results will es-
tablish the basis for conducting preclinical and clinical studies 
exploring whether contrast removal through adsorption can at-
tenuate or prevent CA-AKI.

2   |   Methods

2.1   |   Study Design

The authors carried out an in vitro experimental study emulat-
ing an extracorporeal circuit applied for hemoadsorption. The 
aim of the study was to determine the adsorptive capacity of 
a styrene-divinylbenzene cartridge for the iodinated contrast 
medium iohexol. The main variables explored were the solute 
reduction ratio, solute clearance, and sorbent saturation. The 
elements in the circuit were a blood tubing circuit for hemodial-
ysis, a peristaltic pump, a glass reservoir, and a cartridge packed 
with sorbent resin (Figure 1a,b). The cartridge was interposed 
in the circuit downstream of the peristaltic pump. A solution 
containing iohexol was propelled into the closed-loop circuit. 
Samples of the solution were collected from the reservoir at dif-
ferent time points. We performed the experiment twice.

2.2   |   Iohexol Solution

A 0.9% NaCl solution (Baxter Gambro S.p.A., Medolla, Italy) 
was spiked with iohexol (OMNIPAQUE 350, GE Health Care 
S.r.l., Milano, Italy), which contains 755 mg of iohexol equiv-
alent to 350 mg of organic iodine per mL. Iohexol—Bis(2,3-
dihydroxypropyl)-5-[N-(2,3-dihydroxypropyl)-acetamido]-2,4,6-
triiodo-isophthalamide is an iodinated, water-soluble, nonionic 
monomeric contrast medium (Figure 2a,b).

Iohexol's molecular weight is 821 Da, [20] categorized as a small-
middle molecule according to the current classification of mid-
dle molecules [21].

We prepared a solution with 40 mL of OMNIPAQUE 350 dissolved 
in 960 mL of 0.9% NaCl, aiming for a final iohexol concentration 
of 30.2 g/L. The authors decided to use the dose of 40 mL because 
the mean iodinated contrast volume in complex procedures such 
as selective coronary arteriography combined with ventriculog-
raphy or during transcatheter aortic valve replacement is around 
100 mL [18, 22]. Considering that the blood volume of a 70-kg 
person is 4200 mL (60 mL/kg of body weight), if the hematocrit 
is 40%, plasma volume (i.e., 1—hematocrit) equals 2520 mL [23]. 
In these conditions, the theoretical concentration of the contrast 
medium would be similar to the concentration in plasma in clin-
ical settings. The solution was recirculated into the closed-loop 
circuit for 60 min.

2.3   |   Circuit

The circuit was applied to the GALILEO platform (IRRIV 
Foundation, Vicenza, Italy), in which a peristaltic pump 
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for extracorporeal circulation propels the solution, see 
Figure 1a,b. A 1000 mL glass reservoir (Schott 1000 DURAN, 
Sigma-Aldrich, Darmstadt, Germany) with a stir bar con-
tained the solution. The reservoir remained over a hotplate 
magnetic stirrer (VELP Scientifica S.r.l., Usmate Velate, Italy). 
A customized blood tubing system for the extracorporeal cir-
cuit had its inlet and outlet extremities connected to the res-
ervoir. The modified cartridge was connected downstream of 
the peristaltic pump and was held in an upward position, with 
the inlet port facing downwards. The circuit was primed with 
saline solution.

2.4   |   Cartridge

The authors utilized a mini-module cartridge (1:3 scale model) 
filled with the sorbent resin of the HA380 commercial cartridge 
(Jafron Biomedical, Zhuhai City, China) [24]. The cartridge con-
tains 125 mL (105 g) of mesoporous [25] sorbent resin (double 
crosslinked styrene-divinylbenzene copolymers) in the form of 
beads with an average diameter of 800 μm. The cartridge's tech-
nical data are described in Table 1.

2.5   |   Iohexol Sampling and Measurement

The solution was pumped at 250 mL/min at a constant tem-
perature of 37.0°C. The sampling of 2 mL aliquots of the solu-
tion occurred at eight time points (0, 5, 10, 15, 20, 30, 40, and 
60 min). The samples were diluted 1:250, and the results were ob-
tained after the correction for the dilutional factor. Dilution was 
necessary to adjust the results within the linearity range of the 
ultraviolet–visible detector, preventing its saturation and under-
estimation of iohexol concentration. The analysis of the samples 
was performed in duplicate at the Biological Sales Network head-
quarters in Castellone.

The method for the iohexol concentration measurement was 
high-performance liquid chromatography with ultraviolet 
(HPLC-UV) detection [20] using the FloChrom kit (Biological 
Sales Network—B.S.N., Castellone, Italy). The analytes are sep-
arated by isocratic chromatography. Notably, iohexol has two 
structural isomers (i.e., endo- and exo-isomers). The test results 
in the chromatogram comprise two distinguishable peaks rep-
resenting the endo and exo forms. Therefore, the total concen-
tration is the sum of the isomers' individual concentrations.

FIGURE 1    |    Experimental circuit setup. A peristaltic pump propels a saline solution containing iohexol from a reservoir through a cartridge. 
This device contains 125 mL (105 g) of mesoporous sorbent resin (double crosslinked styrene-divinylbenzene copolymers) in beads with an average 
diameter of 800 μm. The circuit emulates an extracorporeal circuit from blood purification in a closed-loop configuration. (a) Schematic graphic rep-
resentation of the components and parameters configurations. (b) Picture of the components and parameters configurations during the execution of 
the experiment.

FIGURE 2    |    Iohexol properties. (a) Tridimensional molecular structure. (b) Molecular size.
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2.6   |   Parameters and Calculations

The reduction ratio is derived from the following formula:

where Ci is the initial concentration, C(t) is the concentration at 
different time points (t), and consequently, RR(t) is the reduction 
ratio in the specified time points. The formula to calculate the 
iohexol mass adsorbed (Massads) was:

where Ci is the initial concentration, V is the solution volume, 
and RR(t) is the reduction ratio at different time points (t).

Finally, iohexol clearance was calculated based on this formula:

where the elimination rate is the iohexol Massads in a time inter-
val. Thus, the clearance can be calculated as follows:

where the clearance between two time points represented as (t1) 
and (t2) equals the mass adsorbed during this time interval di-
vided by the solute concentration or [C] in (t1) and by the time 
interval between (t1) and (t2).

2.7   |   Data Analysis

Due to the experiment's simple descriptive design, specific sta-
tistical analyses were unnecessary. Data were plotted in Excel 
(Microsoft, Redmond, Washington, USA).

3   |   Results

3.1   |   Reduction Ratio

In experiment 1, after 60 min of recirculation, the iohexol con-
centration measured by HPLC-UV decreased from 30.73 to 
14.44 g/L (Figure 3), with a reduction ratio of 53.0%. In experi-
ment 2, after 60 min of recirculation, the iohexol concentration 
decreased from 30.82 to 14.44 g/L (Figure  3), with a reduction 
ratio of 53.1% (Table 2).

3.2   |   Iohexol Clearance

Iohexol clearance decay over time for both experiments is repre-
sented in Figure 4. In experiment 1, the iohexol clearance was 
46.79 mL/min during the first 5 min, decaying to 3.57 mL/min 
during the last 20 min. Similarly, in experiment 2, the iohexol 
clearance was 46.72 mL/min during the first 5 min, decaying to 
3.87 mL/min during the last 20 min (Table 3).

3.3   |   Sorbent Saturation

In both experiments, after 40 min, the reduction in the iohexol 
concentration was marginal, denoting the sorbent's saturation. 
At 60 min, the total mass adsorbed was 16.29 g and 16.37 g in ex-
periments 1 and 2, respectively (Table  2). Since each cartridge 
contained 105 g of sorbent, the ratio of adsorbate/sorbent is approx-
imately 155 mg/g. Therefore, each gram of the sorbent can remove 
roughly 155 mg of iohexol dissolved in a saline solution at 37.0°C.

4   |   Discussion

This in vitro study demonstrates that iohexol is efficiently removed 
from a saline solution via adsorption with a styrene-divinylbenzene 
resin. The two experiments yielded almost identical results. 

(1)RR(t) =
Ci − C(t)

Ci

(2)Massads = Ci ∙ V ∙ RR(t)

(3)Clearance (mL∕min) =
Elimination rate (g∕min)

Concentration (g∕mL)

(4)Clearance(t1,t2) =
Massads (t1,t2)

[C](t1) ∙ (t2 − t1)

FIGURE 3    |    Iohexol concentration at the defined time points.

TABLE 1    |    Device (HA380 mini-module) technical data.

Adsorbent material

Double crosslinked 
styrene-divinylbenzene 

copolymers

Mass 105 g

Adsorbent volumea 125 mL

Priming volumea 100 mL

Mean pore size 3.34 nm

Mean bead diameter ~800 μm

Cartridge volume, length, and 
radius

200 mL, 9 cm, and 2.66 cm

Housing, net rack, end cover, 
cap nut, and cap material

Polycarbonate

Filter mesh Polyester

O-ring seals Silicone

Blood flow range 100–700 mL/min

Effective adsorption area 18.000–20.000 m2

Sterilization Gamma irradiation

Manufacturer Jafron
aInformation provided by the manufacturer.
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Approximately half of the total iohexol mass was cleared from the 
solution during the experiment, which comprised 60 min of recir-
culation. Of note, roughly 50% of the removal occurred during the 
first 5 min, whereas only about 4% occurred during the last 20 min. 
From a clearance perspective, during the first minutes, the iodin-
ated contrast clearance was 47 mL/min, while it decayed to around 
4 mL/min from 40 min onwards.

The rapid removal of the solute during the first minutes is con-
sistent with similar in vitro experiments evaluating the removal 
of medications such as ticagrelor, [26] factor Xa inhibitors (an-
ticoagulants), [27, 28] anticonvulsants, [29] and antimicrobials 
[30–32]. In these other experiments with distinct target solutes, 
the bulk of removal also occurred in the first 60 min.

The use of saline as the solvent is a limitation of our study. 
The presence of other solutes in plasma or whole blood could 
decrease adsorption efficiency. Therefore, the assessment of ef-
ficacy in vitro using saline cannot be extrapolated for the clin-
ical context. Probably, the efficiency in clinical use is not as 
much as pointed out by our results. This can occur because of 
competition for adsorptive sites in the resin and unintended 
protein (e.g., fibrinogen) deposition and pore obstruction in 
the beads, preventing the interaction between solutes and the 
sorbent outer and inner surfaces. The pump flow was set at 
250 mL/min, impeding explorations related to flow variations. 

Remarkably, in clinical practice, because of vascular access 
constraints or patient characteristics (e.g., pediatric setting), 
a blood flow of 250 mL/min is not always attainable. Indeed, 
it would be relevant to explore this variable because one fore-
seeable application of hemoadsorption to mitigate CA-AKI 
would use a 7 French peripherally inserted central dual-lumen 
catheter as the vascular access. This less invasive strategy pre-
vents the placement of a hemodialysis catheter. At lower sol-
vent flows, there is more time for interaction between the fluid 
phase and the sorbent, at the cost of taking a more extended 
period to circulate all the solution through the cartridge, which 
can impact the adsorption kinetics. Another independent vari-
able we did not explore was the initial solute concentration. A 
higher initial concentration may intensify the clearance decay 
over time.

Our data show that each gram of resin can adsorb approximately 
155 mg of iohexol. The commercially available cartridge HA380 
has 310 g of resin. Hence, ~50 g of iohexol can be adsorbed in 
this cartridge, equivalent to the amount present in 66 mL of 
OMNIPAQUE 350. In complex procedures such as transcatheter 
aortic valve replacement, the mean volume of contrast adminis-
tered is 100 mL [18]. This implies that roughly two-thirds of the 
iohexol mass in this volume could be removed in a 1 to 2-h he-
moadsorption session with the HA380 cartridge before saturation 
[18]. From a clinical perspective, two consecutive treatments, 
each using one HA380 cartridge, could enhance contrast elimi-
nation and minimize the exposure of body tissues to the contrast 
medium.

Currently, guidelines advocate against the use of hemodialy-
sis following exposure to iodinated contrast to prevent or mit-
igate AKI. Furthermore, for patients on maintenance dialysis, 
there is also a recommendation to discourage anticipation of 
a dialysis session after contrast administration to preserve re-
sidual kidney function [33, 34]. One randomized clinical trial 
failed to demonstrate the usefulness of hemodialysis in re-
ducing acute kidney disease following contrast medium expo-
sure in chronic kidney disease patients [35]. Owing to the fact 
that the extraction of iodinated contrast by adsorption seems 
quicker than what has been demonstrated with hemodialysis, 
[36] clinical trials with hemoadsorption could yield beneficial 

FIGURE 4    |    Iohexol clearance at the defined time points.

TABLE 2    |    Iohexol kinetics in an in vitro adsorption closed-loop circuit.

Time 
(min)

Reservoir 
(g/L) 

experiment 
1—mean

Reservoir 
(g/L) 

experiment 
2—mean

Reduction 
ratio (%) 

experiment 1

Reduction 
ratio (%) 

experiment 2

Mass 
adsorbed (g) 
experiment 1

Mass 
adsorbed (g) 
experiment 2

0 30.73 30.82 — — — —

5 23.54 23.60 23.4 23.4 7.19 7.21

10 21.12 21.23 31.3 31.1 9.62 9.56

15 19.57 19.70 36.3 36.1 11.15 11.13

20 18.21 18.30 40.7 40.6 12.51 12.51

30 16.63 16.78 45.9 45.6 14.10 14.05

40 15.55 15.65 49.4 49.2 15.18 15.16

60 14.44 14.44 53.0 53.1 16.29 16.37
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results concerning the occurrence of AKI. Besides, other con-
ditions induced by iodinated contrast, such as iodide sialade-
nitis [37–39], and encephalopathy, [40] might be obviated with 
hemoadsorption.

5   |   Conclusion

A 1:3 scale model of the HA380 cartridge containing 105 g of 
styrene-divinylbenzene resin efficiently removes iohexol in an 
experimental extracorporeal blood purification circuit setup. In 
proportion, the mass removed would represent roughly two-
thirds of the amount administered in major cardiac endovascu-
lar interventions. These findings provide a rationale for exploring 
hemoadsorption as an intervention in clinical trials to prevent or 
mitigate CA-AKI in high-risk patients.
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