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Abstract
Advances inour understanding of uremic retention solutes, and improvements in hemodialysismembranes and
other techniques designed to remove uremic retention solutes, offer opportunities to readdress the definition
and classification of uremic toxins. A consensus conference was held to develop recommendations for an
updated definition and classification scheme on the basis of a holistic approach that incorporates
physicochemical characteristics and dialytic removal patterns of uremic retention solutes and their linkage to
clinical symptoms andoutcomes. Themajor focus is on the removal ofuremic retention solutes byhemodialysis.
The identification of representative biomarkers for different classes of uremic retention solutes and their
correlation to clinical symptoms and outcomes may facilitate personalized and targeted dialysis prescriptions
to improve quality of life, morbidity, and mortality. Recommendations for areas of future research were also
formulated, aimedat improvingunderstandingofuremic solutesand improvingoutcomes inpatientswithCKD.

CJASN 16: 1918–1928, 2021. doi: https://doi.org/10.2215/CJN.02660221

Background
Uremia is a broad term that has been variably used to
describe the buildup of metabolic waste products,
such as urea, that occurs with diminished kidney func-
tion. Along with the retention of metabolic waste prod-
ucts, patients with advanced kidney disease typically
experience a constellation of symptoms that may
include nausea, vomiting, fatigue, anorexia, muscle
cramps, pruritus, mental status changes, and others,
which lead to a reduced quality of life and excess mor-
bidity and mortality. Given the retention of metabolic
waste products with advanced kidney disease, there
has been much interest in using dialysis techniques to
remove these substances with the hope that symptoms
and outcomes would also improve. However, this goal
has only been partially achieved, and outcomes for
patients with kidney disease remain suboptimal.
Although our knowledge of solutes that build up with
uremia has increased, there is a growing recognition
that dialysis prescriptions (both hemodialysis and peri-
toneal) may not be effective in their removal. Further-
more, technological advances, such as the development
of new hemodialysis membranes and the ability to per-
form high efficiency hemodiafiltration, enable the
removal of molecules from the body up to a mass of
approximately 50 kDa (1). Besides, other new technolo-
gies are being developed to remove toxins that build up
with abnormal kidney function (2).

In light of these developments, an expert conference
was convened to identify limitations in the definition
and classificationofuremic retention solutes and toxins.

Experts in the field were tasked with a comprehensive
reviewof the current definition and classificationofure-
mic retention solutes, and posed several critical ques-
tions and recommendations todefine these toxins better
and map future studies for improving outcomes.

Materials and Methods
A diverse panel of clinicians and researchers repre-

senting experts in the field of uremia and uremic toxins
were identified and invited by the conference chair
(C.R.) to participate. In addition, a few individuals
were chosen on the basis of experience in managing
consensus processes. The conferencewas held virtually,
over 3 days from November 30 to December 2, 2020,
with additional small group sessions over the subse-
quent weeks. This consensus meeting used a modified
Delphi method to achieve consensus, as previously
described (3).
The consensus conference began with a preconfer-

ence comprehensive literature search and appraisal of
scientific evidence to identify key themes that are
central to uremia and uremic toxins. Conference
participants were divided into three workgroups
(Supplemental Table 1) and were tasked with address-
ing the following themes: critical appraisal of limita-
tions in the current definition/classification of uremic
retention solutes; rationale for updating definition and
classification of uremic retention solutes andmolecules
of interest in the field of maintenance hemodialysis;
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and proposal of a new classification of solutes of interest in
uremia and hemodialysis. Literature searches were per-
formed using theNational Institutes of Health PubMed plat-
form. Individual workgroups presented their output to con-
ference participants during the three online plenary sessions
for debate, discussion, and suggested revisions. In addition,
recommendations for research were formulated for all key
areas. The final product was then assessed and aggregated
in a videoconference session attended by all attendees, who
approved the consensus recommendations. A detailed des-
cription of themethodology is provided in the Supplemental
Methods.

Redefining Uremic Toxins
Rationale. In 2003, the European Uremic Toxin (EUTox)

Work Group proposed five criteria for an organic solute to
be classified as a uremic toxin (Figure 1, left column) (4). Inor-
ganic solutes (e.g., water, potassium, sodium, magnesium,
phosphate) were excluded in these criteria given the avail-
able literature on these solutes and their divergent intradia-
lytic removal patterns from other solutes of interest.
The current view of uremic toxicity incorporates many

solutes that are retained during kidney failure and have dif-
ferent physiochemical characteristics and diverse adverse
effects on biologic systems (5). Moreover, there are differ-
ences in toxicity of solutes, depending on whether a solute
is studied alone or in conjunction with other solutes that
may interact in complex ways (6,7). Besides, protein-bound
solutes exhibit a large variation in their binding affinities to
various plasma proteins (8,9), and toxicity may be exerted
by the free fraction or the total concentration of these sol-
utes (10). Undisputable proof of the toxicity of a specific
solute can in principle only be obtained if selective removal
is linked with improved outcomes and amelioration of

symptoms, but such studies have been conducted only for
a few uremic toxins (10); in those patients, proof of toxicity
is seldom unequivocal, likely because the effect of specific
toxins may be superseded by that of other solutes with over-
lapping biologic effects and which may interact in various
ways (11).
By 2012, EUTox listed 146 uremic retention solutes (4,8).

New technologies enable expansion of the list, creating a
more comprehensive picture of uremic toxicity than was ini-
tially appreciated (6,11,12). In this context, the question was
raised of whether the current definition of a uremic toxin
can be maintained or requires revision. We concluded that
modifications are necessary to accommodate new advances
in the field, especially with the development of newer hemo-
dialysis techniques. Figure 1 summarizes the current defini-
tion, the terminological limitations of that definition, and the
proposed update.

Recommendations.

1. We suggest the current definition of uremic toxins should
be adapted in terminology to account for the growth in
knowledge in the field (Figure 1).

2. We suggest the scope of the definition should remain
limited to organic solutes.

Physicochemical Classification of Uremic Toxins
Rationale. In 2003, EUTox categorized uremic toxins

according to their physicochemical characteristics that affect
clearance during hemodialysis. This classificationwas essen-
tially inspired by the need to simplify and organize uremic
toxicity concepts within a framework of therapeutic removal
approaches, mainly by hemodialysis. These classes include
small water-soluble compounds with low molecular mass

The terms “chemically
identified” and “biological
fluids” are overly broad and
nonspecific

Current
(Vanholder R et al. KI Suppl 2003)

Such a compound should be
chemically identified, and accurate
quantitative analysis in biological
fluids should be possible

The total body and plasma levels
should be higher in uremic than in
nonuremic subjects

High concentrations should be related
to specific uremic dysfunctions and/or
symptoms that decrease or disappear
when the concentration is reduced

Biological activity, conforming to
clinical changes observed in
conjunction with the uremic
syndrome, should be proven in
in vivo, ex vivo, or in vitro studies

Concentrations in these studies
should conform to those found in
body fluids or tissue of uremic
patients

Terminology limitations Suggested update

Solute identification and accurate
quantitative analysis in plasma, serum,
or blood should be possible

Plasma, serum, or blood levels should
be higher in CKD than in subjects with
normal kidney function

Negative effects, conforming with or
contributing to biological or clinical
changes in CKD, should be proven
in vivo, ex vivo, or in vitro

Biologically active concentrations in
these studies should conform to those
found in plasma, serum, or blood of
CKD patients

• Unclear whether total body
  levels of a solute can be
  measured accurately
• Uremic is a nonspecific term

• Reduction of solute
  concentrations may or may
  not translate to clinical
  improvement

• Concentrations may refer
  to either the free or bound
  fraction of protein-bound
  solutes
• Body fluids or tissue is
  nonspecific
• Uremic is a nonspecific term

Figure 1. | Definition of uremic toxins. The left panel represents the current definition of uremic toxins, with the bold text indicating termi-
nology that we identified as needing an update. The middle panel elaborates on the limitations associated with the identified terms. The right
panel shows the newly proposed definition of uremic toxins.

CJASN 16: 1918–1928, December, 2021 Defining Uremic Toxins, Rosner et al. 1919

D
ow

nloaded from
 https://journals.lw

w
.com

/cjasn by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1
A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
1y0abggQ

Z
X

dtw
nfK

Z
B

Y
tw

s=
 on 08/28/2024

http://cjasn.asnjournals.org/lookup/suppl/doi:10.2215/CJN.02660221/-/DCSupplemental
http://cjasn.asnjournals.org/lookup/suppl/doi:10.2215/CJN.02660221/-/DCSupplemental


(,500Da), protein-bound solutes, and so-calledmiddlemol-
ecules ($500 Da) (13). Of note, the termmiddle molecule is a
misnomer as it refers to peptides with a low molecular
weight. The termwas likely partially inspired by the removal
pattern of hemodialysis membranes used at the time of for-
mulation of the middle molecule hypothesis (14).

Statement 1. The Current Physicochemical Classifica-
tion of Uremic Toxins Does Not Adequately Address or
Reflect How Current/Modern Hemodialysis Technolo-
gies (Mechanisms of Adsorption, Convection, and Diffu-
sion) Remove Toxins. The current physiochemical sub-
division can be considered artificial because there is a
continuum in the molecular weight of uremic solutes, and
any cutoff on the basis of molecular weight is arbitrary
(10). Besides, the degree of protein binding for these uremic
solutes is variable and complicates any schema based solely
on molecular weight. Nevertheless, because hemodialysis
remains the most frequently applied therapeutic strategy to
reduce the concentration of uremic toxins in advanced
CKD, the most practical classification approach is on the
basis of the principles of removal patterns by hemodialysis,
noting it only applies to conventional hemodialysis, and
not to peritoneal dialysis or hemodialysis time frames devi-
ating from typical 4-hour thrice-weekly sessions (15,16).
Also of note, the original classification does not account for
the compartmental partitioning behavior of solutes within
the body (17) or alternative strategies to decrease uremic
toxin concentration (e.g., preservation of residual kidney
function [18,19], adsorptive techniques [20], or strategies
aimed at decreasing solute generation [21–23]). Finally, it
should be acknowledged that any classification on the basis
of dialysis strategies does not take into account that uremic
signs and symptoms in advanced kidney disease may be
present before the initiation of dialysis.
The mechanism of adsorption to hemodialysis membranes

plays a role in removing uremic toxins, although membranes
with truly enhanced adsorptive properties are still in the pipe-
line (20,24–29). Concerning the clinically availablemembranes,
a marked reduction in the sieving coefficient for solutes with
molecular mass .12 kDa demonstrates the adsorptive phe-
nomenon of membrane caking derived from the deposition
of plasma proteins (albumin-bound or soluble uremic toxins
included) obstructing some pores, causing a time-dependent
loss of efficiency during the hemodialysis session (30).
Newer hemodialysis membranes are likely to change the

ability to remove higher molecular weight solutes that may
be toxic. The ability to remove larger uremic toxins relies
largely on convection. The high-flux dialyzer, when applied
in the hemodialysis modality, has a molecular mass cutoff of
25kDa (31), beingboostedup to 30kDawhen inhemodiafiltra-
tionmode (32). A new class of membranes is the medium cut-
offmembrane, with a cutoff of 56 kDa, amean pore radius of 5
nm, andafiber innerdiameter of 180mm(33).As a comparison,
the high-fluxmembrane has amean pore radius of 3.9 nm and
an inner diameter of approximately 200 mm (1,31,33,34). Clear-
ance is more efficient for larger molecules (25258 kDa) with
medium cutoffmembranes than it is for high-fluxmembranes.
Clinical trials have consistently demonstrated increased clear-
ance of larger molecular weight molecules, such as comple-
ment factor D, free k light chains, TNF-a, and b2-microglobu-
lin (35,36). We believe the classification of middle molecules

should include the effect of different hemodialysismembranes
on their clearance, ultimately allowing the personalization of
therapies. We recognize this approach is limited in that it is
focused solely on hemodialysis versus other forms of KRT,
such as peritoneal dialysis and transplantation.

Recommendation.

1. We suggest the definition of uremic toxins should be on
the basis of hemodialysis strategies, membranes, and
removal patterns, acknowledging that any classification
on the basis of cutoff values and/or molecular spatial
configuration or charge would be arbitrary and likely
will need to be changed as technological development
changes solute removal patterns.

Classification on the Basis of Toxicity
Rationale. Uremic toxicity negatively affects multiple

organ systems and metabolic pathways (Figure 2); cardio-
vascular damage (37), increased susceptibility to infection
(38), and neurologic manifestations (39) are major factors
affecting mortality and quality of life of patients with
CKD. However, the current physicochemical classification
of uremic toxins provides no insight into where benefit
may come from increased clearance of a class of uremic
toxins, or where problems may lie by inadequate clearance
of a class of uremic toxins.

Statement 2. The Current Physicochemical Classifica-
tion of Uremic Toxins Does Not Adequately Reflect the
Biologic Consequences of the Toxins and Is Not Able to
Identify which Toxins Possess the Most Clinical Rele-
vance. Wolley and colleagues (40) reviewed the breadth of
effect for one group of uremic toxins, a subgroup of middle
molecules with molecular masses .15 kDa. The authors
demonstrated how these molecules are involved in chronic
inflammation, cardiovascular disease, secondary immuno-
deficiency, and symptom burden. Their review emphasizes
that a physicochemical classification of uremic toxins does
not aid clinicians in addressing a specific complication of
kidney failure. For example, in a patient at high risk of car-
diovascular diseases, there will be involvement of uremic
toxins from small water-soluble, middle-molecule, and
protein-bound groups. Likewise, for the clinicians trying
to improve the outcomes for a patient with recurrent infec-
tions, they will have to target uremic toxins from all three
groups (water soluble,middlemolecules, and protein bound).
There may therefore be a logic to looking at a reclassification
of uremic toxins on the basis of clinical consequences.

In 2018, a scoring system for uremic retention solutes was
developed to classify solutes according to the experimental
and clinical evidence of their toxicity (10). This unique classi-
fication was on the basis of objective and reproducible criteria
and considered most uremic solutes then known (Table 1)
despite limitations (e.g., it is a scoring system on the basis of
the number of conclusive studies). Thus, solutes that are
studied most frequently have a higher likelihood of reaching a
high score; the classification lacks systematic literature anal-
ysis, it provides a framework for defining target molecules
for future uremic toxicity analyses and removal studies.
The expert group considered other classification systems,
but felt thiswas themost evidence-based approach available.
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Recommendations.

1. We suggest using the 2018 classification system (10) that
reflects the degree of known toxicity on the basis of pub-
lished peer-reviewed literature to define the pathophysi-
ologic effect of each uremic retention solute. Periodic
updates will be required as new evidence of the toxicity of
solutes becomes available, and new solutes are identified.

2. We suggest the pathophysiologic effect of each uremic
toxins (e.g., inflammatory, cardiovascular) and solute

origin (e.g., intestinal generation, post-translational mod-
ification) should be stated wherever available.

3. We suggest focusing on a limited number of key body sys-
tem effects that are the most prominent in uremia, such as
cardiovascular damage, susceptibility to infection, andneu-
rologic manifestations for pathophysiologic classification.

Classification on the Basis of Patient Outcomes
Rationale. In addition to the high morbidity and mortality

associated with kidney failure, patients have a high symptom
burden. Studies have demonstrated that reducing the symp-
tom burden is as, if not more, important to many patients
than an extended survival. Therefore, there has been much
interest in recent years in developing robust, reproducible
methods (41–44) to measure the patient experience. Addition-
ally, there are now coordinated international research pro-
grams (45) targeting methods for improving what patients
with kidney failure experience. However, the current classi-
fication of uremic toxins does not include patient experience
or outcomes. The current uremic toxins classification does
not help clinicians prescribe a dialysis regime for a patient
with restless leg syndrome, fatigue, or prolonged recovery
time after a dialysis session. Therefore, it would now be logical
to look at the classification of uremic toxins in light of the
symptoms and patient outcomes they cause. A classification
such as this could then allow dialysis prescriptions to be
specific to individual patient complaints, such as pruritus or
restless leg syndrome.

Statement 3. The Current Physicochemical Classifica-
tion of Uremic Toxins Does Not Adequately Address
Patient Experience or Outcomes and Does Not Reflect
Personal PatientCharacteristics bywhich theDialysisPre-
scription Should Be Made (e.g., Targeting the Prevention
of Cardiovascular Disease, Loss of Residual Kidney Func-
tion, Deterioration of Vascular Access, or Quality of Life).
Since the original classification of uremic retention solutes,
significant advances have been made to understand their

Table 1. Uremic toxins with the highest toxicity evidence score

Highest Evidence Score (4) Second Highest Evidence
Score (3)

p-cresyl sulfate Advanced glycation end products
b2-microglobulin Indoxyl sulfate
Asymmetric dimethyl

arginine
Uric acid

Kynurenines Ghrelin
Carbamylated compounds Indole acetic acid
Fibroblast growth factor-23 Parathyroid hormone
IL-6 Phenyl acetic acid
TNF-a Trimethyl methylamine-N-oxide
Symmetric dimethyl arginine Retinol binding protein

Endothelin
Immunoglobulin light chains
IL-1b
IL-8
Neuropeptide Y
Lipids and lipoproteina

Adapted from Vanholder et al. (10). The ranking was on the
basis of the number of experimental and clinical studies
showing toxicity with a downgrade if 25% of the retrieved
studies showed no effect or a benefit. A score between 4 and 0
was possible, with only the toxins scoring 4 or 3 displayed in
this table. Per score the toxins are ranked top to bottom
according to the proven number of affected organ systems.
aPost-transcriptional modifications.

Uremic
toxins

Kidney

Cardiovascular

Endocrine

Immune system

Hematology

Gastrointestinal

Neurologic

Nutrition/
muscle

Kidney damage
CKD progression

Cardiovascular damage
Endothelial dysfunction
Vascular smooth muscle proliferation

Insulin resistance
Bone mineral dysregulation

Infection
Inflammation

Thrombogenicity
Anemia

Intestinal dysbiosis

Cognitive impairment

Protein energy wasting
Sarcopenia

Higher
mortality
and lower

quality of life

Figure 2. | Uremic toxins and related systemic disorders. The pathophysiologic effect of uremic toxins on organ systems and associated dis-
orders linked with outcomes. Many organ systems influence each other and contribute to kidney damage and cardiovascular morbidity.
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clinical effect in uremia. For example, urea, once considered
biologically inert, has been associated with insulin release
(46), free radical production (47), apoptosis (48), anddisrup-
tion of the intestinal barrier (49). Similarly, molecules such
as b2-microglobulin, complement factor D, immunoglobu-
lin free light chains, endothelin, and fibroblast growth
factor-23 have been shown to have significant effects on
the cardiovascular system, inflammation, and fibrosis
(13,50–53). In contrast, studies demonstrating adverse
effects ofmolecules, such as adiponectin, IL-10, leptin, resis-
tin, or visfatin are lacking (54). TheHEMO (55) and theMPO
(56) studies suggested high-flux hemodialysis membranes
comparedwith low-flux hemodialysismembranes are asso-
ciated with lower risk of mortality in certain subgroups of
patients with long dialysis vintage, diabetes, and serum
albumin of#4 g/dl. Although not conclusive, these results
indicate a potential advantage of increasing the spectrum of
hemodialytic removal of uremic toxins to include larger
molecules. It should be noted that the retention of inorganic
solutes, which, per the definition, are not considered uremic
toxins, and may offset or supersede any beneficial effects
derived from the removal of organic solutes given their
undisputed link to cardiovascular morbidity andmortality.
The classification of uremic solutes does not express their
clinical relevance, nor does it identify candidate molecules
whose dialysis clearance and blood levels may be moni-
tored to assure dialysis adequacy and improvement in
clinical outcomes (10,13). Therefore, future classification
attempts must aim to map patient profile or phenotype
to a single or panel of biomarkers and suggest reduction
or removal techniques that can be best utilized to
decrease levels.

Recommendations.

1. Future studies should focus on correlating solute concen-
trations or the effect of interventions on solute concentra-
tions with clinically relevant outcomes and outcomes of
importance to patients.

2. Ideally, dialysis prescriptions would be tailored to
improve these symptoms and quality of life on the basis
of removal patterns of uremic solutes linked to symptoms
and outcomes.

Assessment of Toxin Measurement and Removal Capacity
Rationale. Amarker of solute removal should be linked to

its toxicity (and improvement of symptoms with removal)
and be representative of other toxins with comparable char-
acteristics. Given the unpredictable effect of kinetics on
removing various uremic toxins in intermittent dialysis strat-
egies such as maintenance hemodialysis (16,57,58), we sug-
gest that (prehemodialysis) concentration after a sufficiently
long equilibration is a better measure of toxin removal than
clearance or pre- to postremoval ratio calculations. Depend-
ing on the efficiency of removal,multicompartmental solutes
will need different equilibration times (Figure 3). An equili-
bration time of 4 weeks allows most solutes (except those
with very low dialytic concentration reduction ratios, which
are observed when the volume of distribution is large rela-
tive to the dialytic clearance) to reach equilibriumwhilemin-
imizing the occurrence of confounders (e.g., loss of residual

kidney function, need for antibiotics, changes in dialytic pre-
scription, changes in dietary intake).

Recommendations.

1. For assessment of toxin removal by extracorporeal treat-
ment, we recommend measuring the prehemodialysis
concentration of a toxin after a period of equilibration
($4 weeks).

2. For comparability reasons, we suggest using the same
equilibration time (4 weeks) to study any other strategy
than extracorporeal removal to decrease toxin concentra-
tion (e.g., medication, dietary intervention, xenobiotics,
and others).

Proposal for a New Classification System of Uremic Solutes
Rationale. It should be emphasized that decreaseduremic

toxin clearancedue to lowGFR is not the sole reason for toxin
accumulation in kidney failure. For example, excessive
production of cytokines and soluble receptors due to local
tissue inflammation is a major contributor to middle-
molecule accumulation (54). Besides, gut dysbiosis generates
a broad spectrumof uremic toxins (57). Thus, a broader view
of uremic solutes that goes beyond simply retention with
poor GFR is needed. Recent data regarding the origin of
uremic toxins, and the new development of hemodialysis
methods and new membranes with the ability to clear ure-
mic toxins with specific characteristics, or by using drugs/
molecules to facilitate the shift from bound fraction to
free fraction (58), lead us to propose a new classification
beyond the classic physicochemical classification.

Statement 4. New Measurement Tools for Uremic Tox-
ins Are Needed in Each Class that Go Beyond Physico-
chemical Classification. Because the available tests (limited
to a few relevant molecules, such as phosphate, urea, serum
creatinine) are not sufficient for clinical needs, new validated
biomarkers are needed. For example, the accumulation of tox-
ins in the uremic milieu nurtures an intermediate inflamed
phenotype related to oxidative stress, fibrosis, senescence,
mitochondrial dysfunction, and tissue hypoxia that promote
premature aging (59) by vascular calcification, left ventricular
hypertrophy, osteoporosis, sarcopenia, frailty, and cognitive
dysfunction. Thus, to better target the intermediate inflamma-
tory phenotype, we suggest considering the kinetics of a wide
range of uremic toxins in addition to the urea kinetics. The
ideal biomarker should be inexpensive, easy to measure, glob-
ally available, correlate with severity of disease, and be sensi-
tive to early subclinical disease, recovery, and response to
therapy. We believe the new classification is clinically
more relevant.

Recommendation.

1. The new classification schema must link uremic solutes
to traditional clinical outcomes and quality of life meas-
ures, including pruritus, restless legs syndrome, and
recovery time after dialysis (60,61).

We propose a panel of biomarkers representing each uremic
toxin class (Figure 4). Small (,500Da)water-solublemolecules
and urea (60 Da) correspond to the criteria mentioned above
and could be included in the biomarker panel. Creatinine
(113 Da) could also be considered a biomarker of small
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water-soluble toxins, but only if factors that are known to con-
found its concentration, such as age, muscle mass, Kt/V, and
normalized protein catabolic rate are accounted for (62).
However, it should be noted there is little evidence linking
creatinine directly with uremic symptoms or outcomes. For
evaluation of small-middle molecular mass (0.5215 kDa)
clearance, we recommend using parathyroid hormone (9.5
kDa) and b2-microglobulin (11.8 kDa). For estimation of
medium-middle (.15225 kDa) and large-middle (.25258
kDa) molecular mass clearance, we recommend analyses of k
(22.5 kDa) and l (45 kDa) free light chains, respectively. Until
validation of a more widely available estimate of protein-
bound solutes, clearance of protein-bound solutes is best
estimated by analyses of indoxyl sulfate andparacresyl sulfate.
It should be noted that residual kidney function can signifi-
cantly contribute to the removal of solutes for which protein
binding limits clearance by hemodialysis. Finally, it is impor-
tant to recognize that the evidence base for use of some
biomarkers is immature and requires additional study.

Importantly, studies linking removal of these biomarkers
to clinical outcomes are required.

Recommendation.

1. Candidate biomarkers representing different types of
uremic retention solutes should be identified and used
as proxies to study various dialytic and nondialytic
removal strategies.

Statement 5. Available andNewer Dialysis Technology
(Including Membranes) Must Be Measured for Its Effec-
tive Removal of Uremic Toxins in Each Class. In recent
years, the clearance profiles of the latest generation of hemo-
dialyzer membranes have improved remarkably. Several
characteristics should be considered for the evaluation of
new membranes. These include new permeability indices,
the hydrophilic or hydrophobic nature of membranes,
adsorption capacity, and electrical potential (63).
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Figure 3. | The modeled effect of increasing dialytic clearance on time required to reach solute concentration equilibrium. The modeled
effect demonstrates that solutes may be classified according to time to reach steady state. Each panel illustrates the time required for solute
concentration to reach equilibrium after an increase in dialytic clearance with 4-hour thrice-weekly treatment. Modeling was performed
for four hypothetical solutes with varying dialytic RRs (0% for CMPF [A], 25% for b2-microglobulin [B], 50% for hippurate [C], and 75%
for urea [D], respectively). Dialytic clearance was increased two-fold for solutes with RR 25%, 50%, and 75%, and was increased from 0
ml/min to 1 ml/min for the solute with RR 0%. Intercompartmental clearances were assumed to be higher than the dialytic clearance such
that the accessible compartment refills rapidly from nonaccessible compartments during dialysis. The RR can therefore refer to blood, plasma,
or serum concentrations. Constant generation and absence of nondialytic clearance of each solute were also assumed. Solute concentrations
are presented without any unit on the y axis, with the weeks after increase in dialytic clearance on the x axis. The arrow indicates the time at
which dialytic clearance is increased. The asterisk (*) indicates the time at which concentrations are within 1% of equilibrium for each solute
during each week of dialysis from then on. The dashed blue line represents the average solute concentration over each week. CMPF, 3-Car-
boxy-4-methyl-5-propyl-2-furanpropionic acid; RR, reduction ratio.
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Furthermore, molecular weight retention onset, molecular
weight cutoff, and the mass transfer area coefficient should
be measured (64). Some studies support the choice of high
volume postdilution hemodiafiltration over the current dial-
ysis techniques (65,66). Beyond diffusion and convection, the
removal pattern of the uremic toxins by hemodialysis meth-
ods could be enhanced by adsorption techniques (58), or by
using drugs or molecules to facilitate the shift from bound
fraction to free fraction (67). Consideration of uremic toxin
characteristics has an effect on treatment choice. Therefore,
clinicians should consider molecular radius, electrical
charges, protein binding solute characteristics, high versus
low molecular weight, hydrophilic versus hydrophobic,
endogenous versus exogenous, secretion by kidney tubules,
and different volumes of distribution (68).

Statement 6. Prototype Uremic Biomarkers Should Be
Validated asNewMeasurement Tools of Uremic Toxicity.
Identifying prototype biomarkers that could be used to opti-
mize the management of kidney failure is essential. Current
methodologies for the evaluation of the adequacy of dialysis,
such as Kt/V, should not be abandoned until high-quality
clinical studies support the use of novel biomarkers. These
biomarkers need to be linked to improving clinical outcomes,
that is, they are directly or indirectly linked to uremic toxicity

processes in vivo. These biomarkers need to predict uremic
manifestations, provide information about mechanisms and
prognosis, improve the safety of interventions to address ure-
mia, or beusedas a surrogatemarkerof auremic toxin or clin-
ical outcome. The relationship between the accumulation of
uremic toxins, intervention, and outcome should be consid-
ered. Although the role of various uremic toxins in patho-
physiological processes that drivemorbidity has beenwidely
studied, the extent of the effect after intervention is less clear.
Moreover, the effect between a change in biomarkers and
aspects of quality of life is virtually unexplored. Novel treat-
ments should establishwhether a change in uremic toxin bio-
markers affects traditional clinical outcomes and whether it
improves quality of life. In addition, the cost of using novel
biomarkers must be assessed and be sensitive to resource-
constrained environments to ensure widespread uptake.

Biomarkers need to be sensitive to subclinical toxicities
and respond to extracorporeal or enhanced endogenous
toxin removal.Amultidimensional understandingof disease
biology using omics technologies (genomics, transcriptom-
ics, proteomics, cytometric, and metabolomics) and “big
data” methodologies is necessary for understanding the
complex pathophysiology of uremia (Supplemental Figure
1). After the relationship between uremia pathophysiology
and target biomarkers is understood, a biomarker discovery

Exogenous
Gut-derived

Molecules dependent on
kidney clearance

Protein-bound
80%

Marker molecules
with known toxicity

Marker molecules
with unknown toxicity
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Small protein-bound
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urea, TMAO

Myoinositol, MMA, DMA,
TMA, PAG
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Large molecules

(>58 kDa)
Modified albumin Albumin
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IGF-I, vitamin B12
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>15-25 kDa
Medium-middle
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TNF, IL-18, IL-10, IL-6,
kappa-FLC, myoglobin,

sTNFR2, FGF-2, prolactin,
complement factor D

Pentatraxin-3, sTNFR1,
AGEs, FGF-23,

lambda-FLC, CX3CL1,
CXCL12, IL-2, YKL-40

Adiponectin, visfatin
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Protein-bound

<80%

Water soluble
Protein-bound
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Removed by high-flux HD

Removed by high-flux HDF

Removed by MCO HDx
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Generation by
endogenous
metabolism
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Large-middle
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�2-microglobulin, IL-8

Figure 4. | New definition and classification of uremic toxins. The third column from right to left subdivides molecules according to their
protein affinity and is followed by a column that describes their molecular weight. On the top of each box of the molecular weight column,
each colored dialyzer represents a dialysis modality and its expected capacity to remove the substances with molecular mass within the range
represented in the box underneath. Although all dialyzer types remove small water-soluble compounds and protein-bound compounds,
removal of protein-bound compounds is less pronounced. The black broken line indicates that many compounds with protein binding
$80% are intestinally generated; the blue broken line indicates that some small water-soluble compounds may be intestinally generated.
ADMA, asymmetric dimethylarginine; AGEs, advanced glycosylation end products; CML, carboxymethyl lysine; CXCL12, C-X-C motif che-
mokine 12; CX3CL1, chemokine (C-X3-C motif) ligand 1; DMA, dimethylamine; FGF, fibroblast growth factor; FLC, free light chain; HCO,
high cutoff; Hcy, homocysteine; HD, hemodialysis; HDF, hemodiafiltration; HDx, expanded hemodialysis; IGF-1, insulin-like growth
factor-1; IL, interleukin; IS, indoxyl sulfate; MCO, medium cutoff; MMA, monomethylamine; PAG, phenylacetylglutamine; pCS, para-
cresyl sulfate; SMDA, symmetric dimethylarginine; sTNFR, soluble tumor necrosis factor receptor; TMA, trimethylamine; TMAO, trimethyl-
amine-N-oxide; YKL-40, chitinase-3-like protein 1.
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phase should follow, by testing candidate biomarkers in
patients with CKD to identify biomarkers with the highest
performance. The highest performers should be validated
in a larger, diverse group of patients. In the next phase, stud-
ies need to assess the effect of biomarker-guided protocols on
clinical outcomes. Finally, test platform development with
rapid turnaround time, low cost, and high accuracy should
be completed before implementation in clinical practice.
ResearchRecommendations. Given themanyunknowns

in the field of uremic toxins, the consensus group felt
strongly that continued research was critical. A research
agenda was identified and listed in Supplemental Table 2.
This agenda links with the above statements and enhances
the move away from the classification of uremic solutes
based solely on physiochemistry and removal patterns on
the basis of prior dialytic techniques andmembranes.Adher-
ence to the research agenda is likely to yield substantial
increases in our knowledge base regarding the uremic syn-
drome and ultimately improve patients’ outcomes.

Summary
Advances in our understanding of uremic toxins and the

availability of new hemodialysismembranes and techniques
have led to a reappraisal of the definition and classification of
uremic toxins. We recommend a more holistic classification
that includes physicochemical characteristics and correlation
to clinical symptoms and outcomes. Besides, the identifica-
tion of representative biomarkers that correlatewith removal
patterns and are clinically relevant in terms of toxicity may
lead tomorepersonalized and targeteddialysis prescriptions
and facilitate the search for nondialysis strategies that have
the opportunity of improving the quality of life and out-
comes for patientswith advanced kidney disease. Validation
of the novel classification will require big data methodolo-
gies, validation in external cohorts, and experimental evi-
dence of toxicity. Of note, new data on uremic toxins and
removal techniques are continuously being published and
these recommendationsmay therefore requiremodifications
as new results become available.
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